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1 INTRODUCTION 

One of the reasons why bhadrons are interesting is that their properties (decays, mixing, 
CP violation) help determine the least well-known elements of the Cabibbo-Kobayashi- 
Maskawa (CK,M) matrix. (For a review of the CKM matrix, see Ref. 1.) Leptonic and 
semileptonic B-meson decay amplitudes are proportional to the CKM matrix elements 
Vca or v,b. Through top-quark box diagrams, Et-B: mixing is sensitive to V,,, where 
4 denotes a d or an s quark. In each case, however, the standard-model expression for 
the (differential) decay rate follows the pattern 

( ::zz:::) = [ :?z:] ( fzz) (Et) (1.1) 

The known factors consist of well-known constants and experimentally measurable quan- 
tities such as masses and kinematic variables. But, as a rule, the QCD factor is non- 
perturbative and cannot be deduced from other experiments. Therefore, to extract the 
CKM factor from the measurement one must have reliable theoretical calculations in 
nonperturbative &CD. 

The only systematic, first-principles approach to nonperturbative QCD is the formu- 
lation on the lattiw2 The most promising calculational method has proven to be large- 
scale numerical computations. Much like an experimentalist, a lattice theorist must 
contend with statistical and systematic errors in numerical data. Hence, the reliability 
of the calculation boils down to the care and control of the uncertainties. Only recently, 
however, have methods and machines become powerful enough to produce reasonably 
reliable estimates for the quantities needed to pin down standard-model parameters. 
Although this report focuses on B physics, a recent review is more general.3 

How does lattice QCD compare to other theoretical approaches to properties of b 
hadrons? The main strength of lattice QCD is that it is QCD. Given enough com- 
puting resources the numerical results are derived from the first principles of the path 
integral, the renormalization group and the QCD Lagrangian. There are only n, + 1 
free parameters, corresponding to quark masses and the gauge coupling. Once these 
are fixed by experiment, using meson masses to fix the quark masses and the lP-1s 
splitting of quarkonium’ Amlp-1s to fix AQCD, there are no more adjustable parame- 
ters. By contrast, both QCD sum rules and effective field theories introduce additional 
parameters-condensates or coupling constants, respectively, which are not calculable 
in a self-consistent fashion. 

Of course, numerical lattice QCD is not omnipotent. Computational physics is more 
labor intensive than theoretical physics. though less so than experimental physics. In 
the case of lattice &CD, the field is just starting to mature. Other aspects of the 
numerical technique-imaginary time and the finite volume-make some calculations 
less feasible. Nevertheless. the origins of the uncertainties in the numerical calculations 
are conceptually understood. In B physics results for leptonic and semileptonic decays 
and neutral-meson mixing are limited only by computer and human resources. But 

‘This quantity is especially insensitive to the quark masses. 
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by the end of the decade the uncertainty in the QCD factor of eq. (1.1) for these 
measurments should be less than or comparable to the experimental uncertainties. 

For the time being, one must live with something called the “quenched approxi- 
mation” (cf. sect. 2), if other errors are to be brought under control. The quenched 
approximation is easy to describe: it omits the vacuum polarization of the quarks. For 
heavy quarks (c, b, t) this is probably tolerable, because their vacuum polarization is 
short-distance, and hence mostly perturb&ix Similarly, one ought to be able to corn- 
pensate for short-distance, light-quark (u, d, s) vacuum polarization. Long-distance 
effects of light quarks is harder to characterize. Nevertheless, the quenched approxi- 
mation can be hoped to provide a useful phenomenology, because it embodies more of 
QCD than, say, the naive quark models do. But, as with an empirical model, presuming 
predictions in one arena after success in another may be subject to trial and error. 

This paper is organized as follows: Because of the importance of the uncertainty 
estimates sect. 2 reviews some of the theoretical foundation and the origin of system- 
atic errors in the numerical calculations. To illustrate the advantages of a systematic 
approach, recent calculations of light hadron masses4 and decay constants5 are briefly 
discussed in sect. 3. The emphasis of sect. 4 is on properties of the B meson-leptonic 
(sect. 4.1) and semileptonic (sect. 4.2) decays and neutral-meson mixing (sect. 4.3)-for 
which reliable QCD calculations will be available within the next few years. Prospects 
for studying nonleptonic decays are discussed in sect. 4.4, and results on the E meson 
wave function are mentioned in sect. 4.5. Sect. 5 shows how a. combination of exper- 
imental measurements and the lattice QCD calculations discussed in sect. 4 can be 
assembled to determine the sides of the celebrated unitarity triangle. Together with the 
assumption of 3-generation unitarity (i.e., the unitarity polygon is indeed a triangle), 
the three sides yield the angles a, p, and -y describing CP asymmetries. 

2 THEORETICAL AND NUMERICAL BASICS 

According to Feynman, vacuum expectation values can be represented as a path integral. 
In field theory, a mathematically sound definition starts with a lattice of finite volume, 
depicted in Fig. 1. For QCD the degrees of freedom are gluons A;(z) (a is a color 
index), quarks $i(Z) (i is an index for spin, color, and flavor), and anti-quarks q{(z). 
Then an expectation value is given by 

(0) = $I& dA;(z) ndQ;(z) nd&(z) . e-s(a3e,d), (2.1) 

L = Na fired =,z l,i 

where S is (a lattice version of) the QCD action. The normalization factor Z,,, is 
defined so that (1) = 1 for each L and a. 

As an application of eq. (2.1), let 6 denote an operator with well-specified quantum 
numbers, built out of A;, I+&, and qi, and consider 

(qt)@+(o)) = (Ol6e-%+10). (2.2) 
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Figure 1: The finite lattice consists of a discrete set of points z separated by lattice 
spacing a. If the number of points on each side is N, the linear size of the finite volume 
is L = Na. Usually one uses periodic boundary conditions, which would identify the 
white sites at the top (far right) with the sites at the bottom (far left). 

Note that the evolution is through imaginary time (eeirt instead oft?“), which makes 
the integral in eq. (2.1) converge better (weight ems instead of eis). Inserting complete 
sets of states 

(cqt)Q+(o)) = c l(olqn)pt ‘“Z * ~(OI&ll)~*e-~‘~, (2.3) 
n 

where E, is the energy of the n-th state. For large enough t the lowest-lying state 
dominates, so its energy El can be read off from the exponential fall-off. If Q has the 
quantum numbers of a B meson at rest, then El = mg. By a similar approach, one 
can determine matrix elements. Substituting a current J for @ in eq. (2.2) yields 

(J(t)@+(o)) ‘“Z t (oljjl)(ll~+lo)e-El’. (2.4) 

for !arge t. Once El and (ll&+lO) h we been determined from eq. (2.3), eq. (2.4) yields 
(OlJIl). If J is the.charged weak current and Q again has the quantum numbers of a El 
meson at rest, (OIJII) is proportional to f~, cf. sect. 4.1. In an obvious jargon, eqs. (2.2) 
and (2.4) are called two-point functions. For matrix elements with hadrons in the final 
state too, one calculates a three-point function 

(@,(t,)J(t*)@(O)) ‘ar%‘.t2 (o~~,lf,)(fil~li,)(i*l~~lo)e-E”‘~-~~~~~, (25) 

to obtain (flljlil). Matrix element of this kind are needed for semileptonic form factors 
and neutral-meson mixing. 

Nonperturbative calculations of eqs. (2.2), (2.4), and (2.5) actually yield masses 
and matrix elements in “lattice units,” e.g. amg rather than mg. Physical results are 
obtained by extrapolating dimensionless ratios. For example, 

IR - = j&n- lim ah(L Q) 
mL3 

(2.6) 0-t” ame(L a)’ 
L = No fixed 
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Fortunately, both limits are constrained by theoretical considerations. The infinite 
volume limit L -t co must conform with general properties of massive quantum field 
theories in a finite volume.6 In QCD the pattern of approach to the continuum limit 

a-+” 
L = No fixed can be deduced from perturbation theory, because of asymptotic freedom. 

Familiar units of MeV are restored by using a standard mass in the denominator of 
eq. (2.6) and setting it to its physical value. Owing to the renormalization group, this 
equivalent to eliminating the bare gauge coupling, one of the free parameters of &CD. 
Rather than mg, as indicated in eq. (2.6), typical choices are rnp or the lP-1s splitting 
of quarkonium Amrp-rs. The latter is especially insensitive to the quark masses, i.e. 
the other parameters of &CD. The quark masses are also parameters that must be set 
by experimental input. For example, rnb is fixed by tuning mr/Amrp-rs to its physical 
value. 

Eq. (2.1) makes an explicit mathematical analogy between quantum field theory 
and statistical mechanics. Starting from eq. (2.1), therefore, a wide variety of nonper- 
turbative techniques from statistical physics can be applied to field theory. For QCD 
the most promising has proven to be a numerical method. First a and L are fixed. 
Then the left-hand-sides of eqs. (2.2), (2.4), and (2.5) are merely integrals of a finite, 
though huge, dimension 5 (L/a)4 x 4 x 8. In practice, available memory in the largest 
supercomputers limits the dimension to IO’-10 in. The only practical way to evaluate 
integrals of such high dimension is Monte Carlo integration with importance sampling, 
almost always with weight ems. Then the whole procedure is repeated for a sequence 
of a’s holding L = Na fixed, and for sequences of L’s holding a fixed. 

There are two ways to reduce the statistical errors. One is to carry out longer Monte 
Carlo runs. This puts a premium on computer speed. The other is to choose the largely 
arbitrary operator +, above, to maximize the signal-to-noise ratio of the twe and three- 
point functions. This puts a premium on computer programmability. From eq. (2.6) it 
is clear that the statistical errors must be under control if sensible extrapolations in a 
and L are to be made. 

There are also two ways to take the continuum limit, and, hence, to control finite 
lattice-spacing errors. One is by brute force, making a smaller and smaller, using a 
simple form of the action S. The other way, which should Save computer time, is to 
improve the accuracy of the lattice action. This is the generalization to field theory 
of methods familiar from the numerical solution of differential equations. In the past, 
statistical errors were often too large to notice any practical improvement from this 
theoretical improvement. Now, however, there are several examples, and one should 
expect “improved actions” to play an important role in B physics. 

For complicated technical reasons the most time-consuming part of the numerical 
calculations mvolve treating the light quarks. The physical root of these problems is 
the Pauli principle: a fermion over here always “knows” something about a fermion 
way over there. It turns out that one can save a factor of lo’-IO3 in computer time by 
neglecting the back reaction of quarks on the gluons. As mentioned in the Introduction, 
this amounts to omitting vacuum polarization while treating the interaction between 
the valence quarks and the gluons exactly. This approximation is therefore sometimes 
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Figure 2: (a) A meson consisting of valence quarks (lines) interacting with the glue (gray 
shading); this quark-line topology is kept in the quenched approximation. (b) Same as 
(a) but with some sea quarks; this topology is omitted in the quenched approximation. 
(c) A flavor-singlet topology kept in the quenched approximation. (d) Flavor-singlet 
topologies omitted in the quenched approximation; such diagrams generate the 7’ mass. 

cailed the valence approximation. More often it is called the quenched approximation 
(calling on an technical analogy to condensed matter physics). Fig. 2 illustrates ex- 
amples of quark-flow diagrams that are kept (a, c) or omitted (b, d) in the quenched 
approximation. In particular, the quenched approximation spoils the mechanism gen- 
erating the mass of the q’, with consequences that could affect other masses through 
self-energy interactions.’ 

Another way to assess the quenched approximation is at the quark-gluon level. As 
shown in Fig. 3, the gauge coupling runs too quickly in the quenched approximation. 
In quenched QCD one effectively adjusts the quenched gauge coupling (dotted line in 
Fig. 3) at the cutoff, so that it agrees with the real coupling (solid line in Fig. 3) at 
the scale of the physics (denoted p,,h in Fig. 3). If the quenched approximation is at 
all successful, many quantities with typical scale bph should be verifiable. On the other 
hand, one need not expect quantities with a typical scale rather different from pph to 
be verified. Usually this consideration is merely heuristic. For nonrelativistic systems, 
i.e. the $J and Y families, the two-body wave function provides the probability of each 
scale, so one can account quantitatively for the effects of the difference between the two 
curvl?s.~ 

To conclude this section, let us offer a handful of questions the nonexpert should 
keep in mind when appraising lattice QCD calculations: 

1. Are the statistical errors small enough to understand anything? 

2. Is the lattice spacing large enough? Or, even better, have lattice-spacing errors 
been extrapolated away? 
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Figure 3: Sketch of the gauge coupling in quenched and “full” &CD. The flavor- 
dependence of the /3-function coefficient bo = 11 - 2nf/3 implies that the coupling 
in the quenched (n/ = 0) case runs more quickly at short distances. 

3. Is the physical volume large enough? Or, even better, have finite-volume errors 
been extrapolated away? 

4. Have the quark masses been adjusted precisely enough? 

5. Is the quenched approximation acceptable? 

With a little luck the lattice mavens will always answer, “At the s% level, yes.” 

3 LIGHT HADRON SPECTRUM 

One of the original goals of lattice QCD was a first principles calculation of the light 
hadron mass spectrum. A recent paper4 employing the quenched approximation reports 
a significant step towards that goal. Using the GF-11, a special purpose computer 
designed at IBM,9 Weingarten, et al, have evaluated the path integral at three values of 
a (and fixed L) and, at the coarsest lattice spacing, three values of L. With mP to convert 
from lattice units to MeV (cf. eq. (2.6)) and m, and rn~ to set the light and strange 
quark masses, their results for two vector mesons and six baryons are summarized in 
Fig. 4. The error bars represent the authors’ estimates of the accumulated uncertainties 
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Figure 4: Spectrum and decay constants of the light hadrons. Error bars are from 
lattice calculations in the quenched approximation,a, s and + denotes experiment. 

from all sources except the quenched approximation. 
The agreement between these quenched QCD results and nature is tantalizing. 

Expert9 10. 11 in the field might quibble about some details of the analysis, but they 
cannot deny that such a systematic attack on the errors is basically sound. A “bottom- 
line” example is the ratio m~/m~, which without extrapolation is too large.“’ After 
extrapolation, however, this ratio agrees to an accuracy much better than the quoted 
precision. Moreover, there are some nontrivial cross-checks: The value of A/z: (= AQCD 

in the “lattice” scheme with n, = 0 active flavors) agrees with the value obtained in lat- 
tice QCD studies of charmonium. s 12 In charmonium, however, it is possible to correct 
for the quenched approximation, because most of the error comes from short distances. 
The same calculationss obtain a value of A& that agrees with deep, inelastic scattering 
and other high-energy processes. 

Fig. 4 also shows results for the r and Ii’ decay constants.5 We have converted the 
results to the convention of eq. (4.2), below, in which fn = 131 MeV. The relative 
uncertainties are larger than for the mass ratios. Because the decay constants are more 
sensitive to short distances, one might hope that the ratio fK/fl wouid be less sensitive 
to the errors of the quenched approximation. Unfortunately, the numerical results do 
not support this idea. 
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4 B-PHYSICS 

In contrast to the light hadron physics discussed above, the lattice-spacing and finite- 
volume dependence of E meson properties has not yet been thoroughly investigated. An 
exception to this rule is the study of the decay constant in the theoretically interesting 
limit of an infinitely heavy b quark. Is. I4 This limit is often called the static limit, 
because the heavy quark is anchored in one place. It seems, however, that the l/mb 
correction to the decay constant is large, so that these results are not directly applicable 
to phenomenology. 

The dynamics of a ha&on with one heavy quark is surprisingly simple, because the 
energy scale associated with the heavy quark mass decouples. For this reason, it is 

possible to treat a heavy quark on the lattice,‘s, 16. Ii even when mpa N 1. 
In this section, subsection titles indicate the product of CKM matrix element and 

B-meson property, where appropriate. 

4.1 Leptonic Decays: ,~BIV&I 

The leptonic width of the charged B meson is given by 

rp -3 lv] = 
1 
Gg7+T2B 8n &em 1 - 3 f~lVub12. i )I 

Eq. (4.1) is a concrete example of eq. (1.1). The numerical value of the bracket is well 
known, although the electromagnetic radiative correction ran,,, is uncertain at the 0.1% 
level. To determine jVubj through a measurement* of a leptonic decay, one must first 
know the decay constant f~, defined by 

W-tuysW-Cd) = WB (4.2) 

with the normalization convention (B-(q)lB-(p)) = 2E~(28)~6(~)(p - q). 
The two-point function in eq. (4.2) [cf. eq. (2.4)) 1s one of the most straightforward 

of lattice QCD calculations. A recent preprint,ls for example, finds 

f~ = 187(10) f 12 i 32 zt 15 MeV, 

f~, = 207( 9) f 10 & 32 i 22 MeV, 

fD = 208( 9) f 11 f 33 i 12 MeV, 

f&=230( E)f10~28ilEMeV 

(4.3) 

The uncertainty in parentheses is statistical; the others are systematic. From left to 
right, they are due to the following sources: 

‘Because of h&city mismatch. the raw is proportional tom:. which makes the measurement difficult. 
This example is worth pursuing-at least pedagogically-because it is so simple. 
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1. Fitting, interpolation, and extrapolation. The t dependence of the numerical two 
point functions is fit to eqs. (2.2) and (2.4) once the lowest-lying pseudoscalar has 
been isolated. The mass of the heavy quark is adjusted by interpolating to nb or 
m,; the mass of the light quark is adjusted by extrapolating to (mU+md)/2 or m,. 
These could be reduced somewhat in concert with a reduction in the statistical 
error. 

2. Large rnb effects. Two l/m* contributions modify the static limit, the kinetic 
energy and a chromomagnetic iC_ B term. Owing to lattice artifacts in the 
standard lattice action, the quark mass is tuned so that the kinetic energy has the 
correct strength, the chromomagnetic term is too weak.i7~ I9 This could be reduced 
with an improved action, as done in Ref. 20. The results with the improved action 
agree extremely well with eq. (4.3), especially when one compares fp/f= from 
both.‘s. ro 

3. Uncertainty in the conversion from lattice units to MeV. As in Ref. 5, it turns 
Out that Cafnlam,h.r. IS # (frl~,Lxpt. This could be an artifact either of non- 
zero lattice spacing or of linite volume, but these possibilities are unlikely because 
Ref. 18 agrees with Ref. 5, which extrapolates these two effects away. Another 
culprit could be the quenched approximation, which is, perhaps, more likely. 

A remarkable feature of Ref. 18 is that the number of systematic uncertainties quoted 
equals the number of authors. 

In ratios many of the errors cancel, because of statistical and systematic correlations. 
The result from Ref. 18 

JD f8 fB fB. 
K=G=z=z-, 

= 0.90 + 5%. (4.4) 

is easy to remember. If fD, were experimentally determined to 5%, eq. (4.4) would 
perhaps be more relevant than eq. (4.3). 

The uncertainty estimates do not explicitly include quenched, finite-volume, or non- 
zero lattice spacing errors. As indicated above, however, some of these errors are im- 
plicitly included in the estimates quoted. From the studies of the static limit’s, I4 one 
expects the volume dependence to be insignificant once the volume is “large enough.” 
The lattice-spacing dependence, on the other hand, is surprisingly large. 

The results shown in eq. (4.3) may disagree with previous lattice calculations. Some 
older results were higher, quoting values larger than 300 MeV for fB. Such numbers 
came typically from early calculations in the static limit, neglecting the dependence on 
the heavy quark mass. In addition, the early studies were at larger lattice spacings and 
often used-operators that were unsuccessful in isolating the lowest-lying states. Other 
older results were lower. These results typically started with heavy quark that were 
relatively light, and extrapolated. These extrapolations were done using an incorrect 
normalization of the current. The correct normalization is now understood”, is and 
Ref. 18, for example, uses it. The difference is most noticeable on coarse lattices; the 
impact of the correct normalization and an associated mass shiftir’ ig is shown in Fig. 5, 
using numerical data from Ref. 21. 
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Figure 5: Putative calculations of qSp = ,/EijTfp, where P denotes a heavy-light pseu- 
doscalar meson, as a function of (inverse) mass. The squares denote an incorrect current 
normalization, which systematically underestimates $p. The circles use a current nor- 
malization and mass definition derived in Ref. 17. 

4.2 Semileptonic Decays: A~‘D’(q2)jVC~I and A~+‘(qZ)(VubI 

The rates of semileptonic decays exceed those of pure leptonic decays, because they do 
not suffer from helicity suppression. They therefore lend themselves particularly well to 
the determination of elements of the CKM matrix. The rates are measurable and the 
reliability of theoretical calculations is better than for nonleptonic decays (sect. 4.4). 
For example, the best determination of IV,,l comes from I< -+ nlv, and the best deter- 
mination of lVcal comes from B -+ D’lv. 

We shall focus on mesons, because they are easier than baryons to study, both 
experimentally and theoretically. A generic semileptonic decay can be denoted A -+ 
Xlu, where A is a. flavored meson. The process is depicted in Fig. 6. The differential 
decay ratefollows the pattern of eq. (1.1): 

dl- 
&5= (4.5) 
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when X is a pseudoscalar meson, and 

dr 
&T= 

G;X’lzqz 1 1 64rr3mA 14(q2)IZIKzIZ, (4.6) 

when X is a vector meson. In eqs. (4.5) and (4.6), q* is the invariant mass of the virtual 
w LO < q* 5 PL,, = (ma - mx)*], V., is the element of the CKM matrix associated 
with the quark-W vertex in Fig. 6, and X = (m’$ + rns - q’)’ - 4m~m~. For brevity 
and a reason explained below, eq. (4.6) is valid only for q* near qi,.. The form factors 
f+ and A, are defined by hadronic matrix element of the V - .4 current 

Jp = Z-/,(1 - %)a (4.7) 

turning flavor a into flavor I. When X is a pseudoscalar meson 

(WA4 = f+(9.*)(p+~‘L + f-(q*)(p- P’L (4.8) 

where p (p’) is the initial (final) state meson’s momentum and q = p - p’ = pi + p,. 
Similarly, when X is a vector meson there are four independent form factors: 

(XIJJA) = cj; [ :;;y; v(‘?‘) - ‘b(‘“A + mx)&(q*) 

+ (P + P’),PX 
mA + mX A&*) - 2mX(pq; “)“‘A(q’)] , 

(4.9) 

where e: is the polarization vector of the final-state meson. The form factors f- and 
A do not appear in the expressions for the differential decay rates because the lepton 
mass has been neglected; AZ and V do not appear for q* near q&, because they are 
suppressed by a higher power of A. 

Figure 6: Quark-flow diagrams for meson semileptonic decays. For the weak interac- 
tions, the diagram may be interpreted as a Feynman diagram. The strong interactions 
binding quarks into mesons must be treated nonperturbatively, however, as indicated 
by the gray shading. The second diagram contributes only when X is an isoscalar. It 
is usually neglected, because it is difficult to calculate and because diagrams similar to 
Fig. 2(d) are omitted in the quenched approximation anyway. 
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Table 1: Semi-leptonic decays and the CKM matrix elements they determine. For 
brevity only pseudoscalar final states are listed; vector final states are p, I(’ and D’, as 
appropriate. 

A-+X V,, COMMENT 

I< + T vu, calibrate quenched approximation 
D -+ T Vcd uncertainty in lvcdl dominated first by BR(D -+ nlv), then by f+ 
D -+ I< V,, uncertainty in IV,,1 dominated by f+ 
B-tD Vcb test/compute corrections to heavy quark limit 
B+x Vua p final state more useful: cf. text 

Table 1 lists a variety if semileptonic decays and their utility in either testing nu- 
merical lattice QCD methods or extracting CKM matrix elements. For B decays two 
entries are of note, depending on whether the quark-level decay is 6 -+ c or b + u. 

For B + DC*) both the charm and bottom quarks are reasonably heavy and one 
can apply heavy-quark symmetry. The kinematic endpoint q$,. = (ms - TTL~~.,)~ is 
especially interesting, because then one can determine the B + D’lv differential decay 
rate up to corrections of order s2, ss l/m&.. A similar analysis shows that the leading 
correction to the B + Dlv differential decay rate is O(l/m~). For q* < qk,, the 
corrections are O(l/mDc.r) for both final states. Using estimates from QCD sum rules 
for the l/m&. and l/m; corrections to Al(q,?&J enables one to limit the theoretical 
uncertainty on IVcaj to 4%. It seems unlikely that lattice QCD can improve on this 
bottom line any time soon, although verification of the QCD sum rule calculations 
would be important. Another contribution that lattice QCD can make is a model- 
independent determination of the q2 dependence. This would assist the extrapolation of 
the experimental data towards the statistics-poor endpoint, possibly reducing the overall 
uncertainty on lv.bl. Exploratory results in this direction have appeared recently.s*, z5 

Lattice QCD can make a more significant impact on the determination of Vub. Since 
the R or p is light, heavy-quark symmetry could only be used to relate, say, D + (PT or p) 
form factors to B + (rr or p) form factors. 26 As above either models or lattice QCD 
would be needed to compute the l/n~ - l/m~ corrections. Strictly speaking, the end 
result would be IVub/Vcdl. It seems more reasonable to use lattice QCD to calculate 
the form factors and use the experiments to determine Iv&j and I&d/ separately. As 
pointed out in Ref. 27 the cleanest procedure is to use p final states with q2 near qAa,, 
The calculations are most reliable at q,&,, because q* < qkax is obtained for p’ # 0, 
and whenjp’)a,h 1 there are additional lattice artifacts. Near q,!,,,, the phase spaces 
suppression is less drastic for vector mesons than for pseudoscalar mesons. No serious 
calculations of Af-‘P(q2) are available yet, although it seems to feasible to complete 
a calculation with 5-10% errors by the time experimental data for dr/dqz become 
available. 

Let us sketch how this will come about, starting from the estimates of the systematic 
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uncertainties for D + Iilv in Ref. 28. One ought to be able to reduce the lo-20% 
statistical uncertainty quoted in Ref. 28 to 2-5%. At that level it is possible to treat 
the systematic quantitatively. (Ref. 28 made semi-quantitative estimates; other papers 
did not estimate systematic errors at all.) The previous 20-40% uncertainty from O(a) 
effects should be reduced to below the statistical error, by extrapolating in a. The 
5-20% uncertainty owing to inadequate knowledge of quark masses should fall to the 
level limited by mass calculations, which is presently estimated to be 2-6%.4 Finally, 
although volume dependence is probably not a problem, momentum and, hence, qz take 
on discrete values in a finite volume. A variety of volumes would make available more 
values of q; 

4.3 l3t-B: Mixing: fiBBIi/;d/’ and f~,B,,IV,.~* 

Neutral-meson mixing is interesting from the point of view of the CKM matrix, because 
it offers a handle on the third row. The rate of mixing is related to 

Amg0 
2dz-T 

l-B0 
$;;;fi(m:jm&) vppco$&f:,BBIV;Vt#, 1 (4.10) 

where 
imif:BB = (B”\6i~,(l -ys)diSjy,(l - ys)djlB’). (4.11) 

Similar expressions hold for the B, meson, substituting an s quark for the d quark 
throughout. The perturbative QCD factor nnpco has been grouped outside of the 
bracket of known factors, even though it is known, because both np~co and Bg depend 
on the renormalization scheme, but the product qp4c~B~ does not. Even though the 
top-quark mass mt is not yet known, the dependence on it is grouped with the known 
factors, because it should be known soon; the function fi is known. 

The peculiar but traditional notation Bg is useful for lattice &CD calculations, 
because Bg is then a ratio of matrix elements for which many uncertainties cancel. 
Although the analogous quantity in the kaon system represents one of the most reliable 
lattice QCD calculations,*s calculations of Bg are still exploratory. At the 20-40% level, 
there is no evidence yet for a significant deviation from the naive expectation Bg = 1. 

The dependence on the top-quark mass and some other “known” factors, cancel in 
the ratio, leaving 

:= [:::.I &IX (4.12) 

Hence, an experimental measurement of zd/xl together with a lattice QCD calculation 
of fABB/(fi,BB,) determines lVtd/Vtsl. As in eq. (4.4) the uncertainty in the B-tc-B, 
ratio should be smaller than in numerator or denominator separately. 

4.4 Nonleptonic Decays 

Nonleptonic decays, such as B + J/$Ks or B + TT+T-, receive almost all of the atten- 
tion in discussions of CP violation. A serious obstacle to the treatment of nonleptonic 
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decays is the presence of two (or more) hadrons in the final state. The technical aspect 
is the difficulty of separating the particles in the finite volume. The conceptual aspect 
is the determination of final-state phase shifts from purely real quantities computed in 
Euclidean field theories.30, 31 It is rigorously known 32 how to determine the resonance 
properties of the p, which decays through an interaction in the QCD Hamiltonian. The 
stumbling block for weak B decays is evidently the application of the ideas in Ref. 32 
when the particle decays through an interaction being treated as a perturbation. Note 
that these difficulties do not stem from the lattice cutoff, but from other features, finite 
volume and imaginary time, introduced to make the computational method tractable. 
Nevertheless, until these issues are resolved, lattice results for nonleptonic decays prob 
ably will not warrant attention from non-experts. 

With the lattice QCD calculations discussed above, however, it will be able to 
determine the angles of the unitarity triangle, as discussed in sect. 5 

4.5 Qualitative Information 

An interesting qualitative result for the B meson is its valence wave function. The 
intriguing res#3 is that the wave functions in the static limit are completely consistent 
with wave functions of the semi-relativistic potential model with Hamiltonian 

H = d+mz + Vqr(z), (4.13) 

where m is the (reduced) mass of the light quark and Vqr(z) is Buchmiiller-Tye potential 
or any other empirical potential consistent with asymptotic freedom, linear confinement, 
and quarkonium phenomenology. Because of the relativistic kinetic energy, the wave 
functions are much broader than in a nonrelativistic model. In particular, the true wave 
function seems to be much broader than those used in phenomenological quark models. 

5 FUTURE PROSPECTS 

The standard model has around 20 parameters and, in the long run, precision lattice 
QCD calculations are needed to determine half of them ever more precisely.3 In partic- 
ular, properties of the B meson are needed to pin down the four parameters associated 
with the CKM matrix. Indeed, in the standard 3-generation parameterization IV,,i, 
\VCbl, and lV,,bl yield (to good approximation) 012, 6’23, and 6’13, respectively. These three 
together with \Vtdl yield the phase 6 responsible for CP violation. Hence, semileptonic 
decays and mixing of the B meson, together with the calculations described above, are 
essential tedetermining three out of,the four CKM parameters. 

To put an even finer point on this observation, consider the unitarity triangle. The 
magnitudes of its sides are jV,,,VJ, IV,,VJ, and IV,,V;,l. Sect. 4.2 shows how to 
determine IVcb/ and IVubl with semileptonic decays; a similar technique for charm decays 
determines IVcdj, Sect. 4.3 shows how to determine jVtdl from neutral-meson mixing. 
Now assume three-generation unitarity. (Eq. (4.10) already does so.) That implies that 
the three sides form a triangle, asshown in Fig. 7. It also implies jVtal = 1, lV,,dl = 0.976. 
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B + + -----& x? 0:-D? 1x1ixing 

D + @ 7 7 B + D’” lV,l,‘,,l 
Figure 7: The unitarity triangle and the B properties needed to determine the sides. 
IvYdl is known from I< + lrlv and jvtb1 is known from three-generation unitarity. 

and IV,,1 = IVcbl; the latter can improve the determination of Ivtdl through Iv~d/vt~l, cf. 
eq. (4.12). Of all these CKM matrix elements lVuaj is the most poorly known, but the 
experimental and theoretical work of the next few years will improve the determination. 
Once is it precise enough, all three sides will be known, and, as any child will tell you, 
then the angles are known too. 

Most theoretical descriptions of CP asymmetries cast them as measurements of 
the angles oi, 0, and y. But three-generation unitarity is often assumed and penguin 
contributions are almost always assumed to be unimportant. Using the calculations 
discussed above, however, one need only assume three-generation unitarity to determine 
cy, B, and y. Because the measurements involved all conserve CP, they will most likely 
be available before the CP asymmetries are. If that is indeed so, it is more accurate to 
say that measurements of CP asymmetries test the CKM theory of CP violation, than 
to say that they determine the CKM parameters. 
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